LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2014

ST 1503/ST 1501-PROBABILITY AND RANDOM VARIABLES

Date : 10/11/2014
Dept. No. \square Max. : 100 Marks
Time : 01:00-04:00

$\underline{\text { PART - A }}$

Answer ALL questions:
(10x2=20 Marks)

1. Three coins are tossed. Find the probability of getting (i) one head (ii) exactly two heads.
2. If A, B, C are three mutually exclusive and exhaustive events. Find $P(B)$, if $\frac{1}{3} P(C)=\frac{1}{2} P(A)=P(B)$.
3. Define random variable with an example.
4. List the properties of distribution function.
5. State multiplication theorem of probability.
6. Define independent events.
7. Define sample space and events.
8. A continuous random variable X has the p.d.f. $\mathrm{f}(x)=\mathrm{A} \mathrm{e}^{-x / 2}, x \geq 0$. Find A .
9. What is the mathematical expectation of the sum of the points on 2 dice?
10. Prove that $\operatorname{Cov}(\mathrm{aX}, \mathrm{bY})=a b \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$

$\underline{\text { PART - B }}$

Answer any FIVE questions:
(5x8=40 Marks)
11. State and prove addition theorem of probability for two events. Extend the result for three events.
12. A bag contains 4 white and 8 black balls. Two balls are drawn at random. What is the probability that (a) both are white (b) both are black (c) one white and one black?
13. Show that $E(X+Y)=E(X)+E(Y)$.
14. Let $P(A)=p, P(A \mid B)=q, P(B \mid A)=r$, find the relations between the numbers p, q and r for the following cases: (a) A and B are mutually exclusive and collectively exhaustive. (b) A is a sub event of B (c) Events A and B are mutually exclusive (d) Events \bar{A} and \bar{B} are mutually exclusive.
15. There are 3 boxes containing 1 white, 2 red, 3 black balls; 2 white, 3 red, 1 black balls; 3 white, 1 red and 3 black balls. A box is chosen at random and from it two balls are drawn at random. The two balls are 1 red and 1 white. What is the probability that they come from (i) the first box (ii) second box (iii) the third box
16. The probability function of a random variable X is given by

$$
P(X)=\left\{\begin{array}{l}
\frac{1}{4} \text { for } x=-2 \\
\frac{1}{4} \text { for } x=0 \\
\frac{1}{2} \text { for } x=10 \\
0 \\
\text { Otherwise }
\end{array}\right.
$$

Find the probabilities (a) $\mathrm{P}(\mathrm{X} \leq 0)$ (b) $\mathrm{P}(\mathrm{X}<0)$ (c) $\mathrm{P}(|\mathrm{X}| \leq 2)$ (d) $\mathrm{P}(0 \leq \mathrm{X} \leq 10)$
17. Find the mean and variance of X whose p.d.f. is $\mathrm{f}(x)=5 \mathrm{e}^{-5 x}, x \geq 0$.
18. Show that (i) $V(c X)=c^{2} V(X)$, (ii) $V(a X+b)=a^{2} V(X)$.

PART - C

Answer any TWO questions:
19. (a) State and Prove Baye's theorem.
(b) State and prove multiplication law of probability.
20. (a) A continuous random variable X has the p.d.f. $\mathrm{f}(x)=\left\{\begin{array}{r}3 x^{2}, 0<x<1 \\ 0 \\ \text { otherwise }\end{array}\right.$

Verify that it is a p.d.f. and evaluate the following probabilities: (i) $\mathrm{P}(\mathrm{X} \leq 1 / 3)$ (ii) $\mathrm{P}(1 / 3 \leq \mathrm{X} \leq 1 / 2) \quad$ (iii) $\mathrm{P}(\mathrm{X} \leq 1 / 2 \mid 1 / 3 \leq \mathrm{X} \leq 2 / 3)$.
(b) Given $\mathrm{F}(x)=\left\{\begin{array}{cc}0 & , x<0 \\ 1-e^{-x} / 4 & , x \geq 0\end{array}\right.$, find
(i) $\mathrm{P}(\mathrm{X}=0)$, (ii) $\mathrm{P}(\mathrm{X}>0)$, (iii) $\mathrm{P}(\mathrm{X}>1)$, (iv) $\mathrm{P}(1<\mathrm{X}<5)$, (v) $\mathrm{P}(\mathrm{X}=3)$.
21. (a) Find the mean and variance of a continuous random variable whose p.d.f is

$$
f(x)=\left\{\begin{array}{cl}
1 / 8 & , 0 \leq x<2 \\
x / 8 & , 2 \leq x<4 \\
0 & , \text { otherwise }
\end{array}\right.
$$

(b) A continuous random variable has the p. d. f. $f(x)=\left\{\begin{array}{cc}6 x(1-x) & , 0 \leq x \leq 1 \\ 0 & , \text { otherwise }\end{array}\right.$ Determine a number b such that $\mathrm{P}(\mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{X}>\mathrm{b})$.
22. (a) Explain the following statements: (i) continuous and discrete random variable.
(ii) Axioms of probability (iii) Mathematical expectation with suitable example.
(b) State and Prove Chebyshev's inequality.

